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It is shown that for a given set of correlations either in a classical or in a quantum
probability space both the classical and the quantum probability spaces are
extendable in such a way that the extension contains common causes of the
given correlations, where common cause is taken in the sense of Reichenbach’s
definition. These results strongly restrict the possible ways of disproving
Reichenbach’s common cause principle and indicate that EPR-type quantum
correlations might very well have a common cause explanation.

1. THE PROBLEM

The aim of this paper is to present two results on the following problem,
raised first within the framework of classical, Kolmogorovian probability
theory in ref. 4, Chapter 14: Let (+, p) be a generalized probability space
with the orthomodular lattice + and additive, normalized measure p on +
and let {(Ai , Bi).i P I} be a set of events in + that are (positively) correlated
with respect to p, i.e., p(Ai ∧ Bi) . p(Ai)p(Bi), with Ai and Bi being compatible
for every i. Assume, furthermore, that there exists no element Ci in + that
can be considered the common cause of the correlation between Ai and Bi

in the sense of Reichenbach’s definition of common cause (see Definition 1
below). The problem is whether (+, p) can be extended to a probability space
(+8, p8) in such a way that for every i the extension +8 already contains a
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common cause Ci of the correlation p(Ai ∧ Bi) . p(Ai)p(Bi). If, for a given
set of correlations, there exists an extension with the said property, then we
call (+, p) common cause completable with respect to the set {(Ai , Bi).i P
I}. We have the following result: (+, p) is common cause completable with
respect to the set {(Ai , Bi).i P I} in the following two cases: (1) + is a
Boolean algebra, p is a classical probability measure on +, and I is finite;
(2) + is a von Neumann lattice, p is a normal state on +, and {(Ai , Bi).i P
I} is the set of all pairs of events that are correlated in p. In fact, we prove
more: we show that even if one requires the common cause to satisfy additional
constraints formulated in terms of the probabilities of the events involved, if
these additional probabilistic constraints are compatible with the Reichenbach
conditions, then there exist extensions containing common causes satisfying
the further constrains (see Definition 5 for a precise definition of common
cause completability and Proposition 2 and 3 for the results.)

In Section 3 we interpret these two propositions from the point of view
of the alleged violation of Reichenbach’s common cause principle by quantum
mechanics. Our conclusion will be that the standard proofs of violation of
the common cause principle by quantum theory contain extra assumptions
that are not part of the common cause principle, and that the common cause
principle might very well be compatible with the existence of certain observed
quantum correlations between spacelike-separated quantum events.

2. REICHENBACH’S NOTION OF COMMON CAUSE

Let + be an orthomodular (s-) lattice (s-lattice) and p be an additive
(s-additive if + is a s-lattice) state on +. Two elements A, B P + are called
compatible, c(A, B) in notation, if A 5 (A ∧ B) ∨ (A ∧ B'). If A, B are
compatible and

p(A ∧ B) . p(A)p(B) (1)

then A and B are called (positively) correlated with respect to the state p.

Definition 1. If A and B are positively correlated, then C P + is called
a common cause of the correlation (1) if C is compatible with both A and B
and the following conditions hold:

p(A ∧ B.C ) 5 p(A.C )p(B.C ) (2)

p(A ∧ B.C') 5 p(A.C')p(B.C') (3)

p(A.C ) . p(A.C') (4)

p(B.C ) . p(B.C') (5)

where p(X.Y ) 5 p(X ∧ Y ) / p(Y ) denotes the conditional probability of X on
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condition Y and it is assumed that none of the probabilities p(X ) (X 5 A, B,
C, C') is equal to zero. The common cause C is called proper if it differs
from both A and B by more than a p-probability zero event.

The above definition of common cause reduces to that of Reichenbach
[6] in the case when + is a Boolean algebra and p is a classical probability
measure on +.

Given a statistically correlated pair of events A, B in a probability space
(+, p), a proper common cause C in the sense of Reichenbach’s definition
does not necessarily exist in +. If this is the case, then we call (+, p) common
cause incomplete. The existence of common cause incomplete probability
spaces leads to the question of whether such probability spaces can be enlarged
so that the larger probability space contains a proper common cause of the
given correlation. What is meant by “enlargement” here is contained in the
following definition.

Definition 2. The probability space (+8, p8) is called an extension of
(+, p) if there exists an embedding h: + → +8 such that

p(X ) 5 p8(h(X )) for all X P + (6)

Recall that h: + → +8 is an embedding if h preserves all lattice operations
and X Þ Y implies h(X ) Þ h(Y ).

This definition of enlargement, and in particular the condition (6), implies
that if (+8p8) is an extension of (+, p) (with respect to the embedding h),
then every single correlation p(A ∧ B) . p(A)p(B) in (+, p) is carried over
intact by h into the correlation

p8(h(A) ∧ h(B)) 5 p8(h(A ∧ B))

5 p(A ∧ B) . p(A)p(B) 5 p8(h(A))p8(h(B))

Hence, it makes sense to ask whether a correlation in (+, p) has a Reichen-
bachian common cause in the extension (+8, p8).

Given a correlation p(A ∧ B) . p(A)p(B), we call a set of five real
numbers rC , rA.C, rB.C, rA.C', rB.C' admissible if they satisfy the conditions

0 # rA.C, rB.C, rA.C', rB.C' # 1 (7)

p(A) 5 rA.C rC 1 rA.C' (1 2 rC) (8)

p(B) 5 rB.C rC 1 rB.C' (1 2 rC) (9)

p(A ` B) 5 rA.C rB.CrC 1 rA.C' rB.C' (1 2 rC) (10)

0 , rC , 1 (11)

rA|C . rA.C' (12)
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rB|C . rB.C' (13)

It is easy to see that the above conditions are equivalent with the Reichenbach
conditions in the sense that given a correlation p(A ∧ B) . p(A)p(B), the
admissible numbers rC , rA.C, rB.C, rA.C', rB.C' are numbers that can be equal
with the probabilities that are indicated by their subscripts—provided there
exists a common cause C of the correlation; conversely, given a correlation
p(A ∧ B) . p(A)p(B), if there exist a C in the set of events such that the
numbers rC 5 p(C ), rA.C 5 p(A.C ), rB.C 5 p(B.C ), rA.C' 5 p(A.C'), rB.C'

5 p(B.C') satisfy (7)–(13), then C is a common cause of the correlation in
the sense of Reichenbach.

Definition 3. A common cause C of a correlation p(A ∧ B) . p(A)p(B)
is said to have (be of) the type (rC , rA.C, rB.C, rA.C', rB.C') if these numbers
are equal to the probabilities indicated by the indices, i.e., if the following
equations hold:

p(C ) 5 rC (14)

p(A.C ) 5 rA.C (15)

p(A.C') 5 rA.C' (16)

p(B.C ) 5 rB.C (17)

p(B.C') 5 rB.C' (18)

Elementary algebraic calculation shows that the following proposition
is true.

Proposition 1. Given any correlation p(A ∧ B) . p(A)p(B) in (+, p),
there exists a nonempty two-parameter family of numbers

rC(t, s), rA.C(t, s), rB.C(t, s), rA.C'(t, s), rB.C'(t, s)

that satisfy the relations (7)–(13).

Definition 4. We say that (+8, p8) is a type (rC , rA.C, rB.C, rA.C', rB.C')
common cause completion of (+, p) with respect to the correlated events A,
B if (+8, p8) is an extension of (+, p), and there exists a Reichenbachian
common cause C P +8 of type (rC , rA.C, rB.C, rA.C', rB.C') of the correlation
p8(h(A)∧h(B)) . p8(h(A))p8(h(B)).

We can now give the basic definition of the paper:

Definition 5. Let (+, p) be a probability space and {(Ai , Bi).i P I} be
a set of pairs of correlated events in +. We say that (+, p) is common cause
completable with respect to the set {(Ai , Bi).i P I} of correlated events if,
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given any set of admissible numbers (r i
C, r i

A.C, r i
B.C, r i

A.C', r i
B.C') for every

i P I, there exists a probability space (+8, p8) such that for every i P I the
space (+8, p8) is a type (r i

C, rA.C, r i
B.C, r i

A.C', r i
B.C') common cause extension

of (+, p) with respect to the correlated events Ai , Bi.

We are in the position to formulate the following problem:

Problem. Is every probability space (+, p) common cause completable
with respect to any set of events that are correlated in p?

The general solution of this problem is not known; however, we have
results in two typical cases. These results are formulated in the next two
propositions.

Proposition 2. Every classical probability space (6, m) with the Boolean
algebra 6 and classical probability measure m is common cause completable
with respect to any finite set of correlated events.

Proposition 3. Every quantum probability space (3(}), f) with the von
Neumann lattice of projections 3(}) of a von Neumann algebra } and a
normal state f is common cause completable with respect to the set of pairs
of events that are correlated in the state f.

We omit the lengthy and tedious proofs of these two propositions (for
a detailed proof see ref. 3).

3. COMMENTS ON THE SIGNIFICANCE OF COMMON CAUSE
COMPLETABILITY

Reichenbach’s common cause principle is a nontrivial metaphysical
claim about the causal structure of the physical world: if a direct causal
influence between the probabilistically correlated events A and B does not
exist, then there exists a common cause of the correlation (in Reichenbach’s
sense). One of the difficulties in interpreting quantum mechanics is the alleged
impossibility of a common cause explanation of certain (EPR) correlations
between spacelike-separated quantum events. If a common cause means
exactly the Reichenbachian common cause as specified in Definition 1 and
an explanation of the quantum correlations in question is indeed provably
impossible in terms of such a common cause, this would indeed falsify
Reichenbach’s common cause principle. We interpret Propositions 2 and 3
as strong restrictions on the possible proofs aiming to show that common
causes of correlations do not exist: any such proof must require of the common
cause to satisfy some supplementary conditions beyond and above the Rei-
chenbachian ones (2)–(5); furthermore, those additional conditions clearly
cannot be formulated purely in terms of the probabilities p(C ), p(A.C ),
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p(B.C ), p(A.C'), and p(B.C'). This is because the assumptions in Proposi-
tions 2 and 3 contain no restrictions whatsoever on these probabilities—
beyond the Reichenbach conditions.

One possible supplementary condition could in principle be to assume
that different correlations have the same common cause. Note that neither
Proposition 2 nor Proposition 3 claims that there exist extensions containing
common common causes, i.e., common causes shared by two or more mem-
bers of the given set of correlations. In fact, it is not difficult to show that
there exist classical probability spaces containing two distinct correlations
that cannot have a common common cause. It is not surprising, then, that
the same holds in the case of quantum correlations, and it is this fact that
the standard proofs of impossibility of common causes of EPR correlations
prove [e.g., 9, 2, 7]. But there does not seem to be any obvious reason why
common causes should also be common common causes, whether of quantum
or of any other sort of correlations. In our interpretation of Reichenbach’s
notion of common cause there is nothing that would justify such an
assumption.

One way of going beyond the Reichenbach conditions in the EPR situa-
tion is to express “no conspiracy” in terms of (conditional) probabilities
involving also events such as the events of choosing the measurements in
the two wings of the experimental setup. A detailed investigation in this
direction is carried out in ref. 8. The (numerical) results obtained so far are
in line with the conclusion of the present paper: a (hidden) common cause
explanation of the EPR correlations seems possible.

Yet another way to amend the Reichenbach conditions is to link the
problem of common cause explanation of correlations to an underlying non-
probabilistic spacetime causal structure. This is done in ref. 5 in the framework
of quantum field theory, where the correlated events belong to well-defined
spacetime regions by their construction, hence the common cause can be
required to belong to the common causal past of the correlated events. Under
this specification it is not even known whether the probability space (+, p)
defined by quantum field theory is common cause incomplete.

It should be mentioned that while the impossibility of (nonprobabilistic)
common common causes of the (nonprobabilistic) GHZ correlations has been
proved in ref. 1, it remains open in that paper whether noncommon common
causes of the GHZ correlations exist. It might very well be that noncommon
common causes of quantum correlations do indeed exist.

It would be interesting to know if Proposition 2 is true also in the case
of an infinite set of correlations. Another open question is whether common
cause closed probability spaces exist, where (+, p) is said to be common
cause closed if for any correlation p(A ∧ B) . p(A)p(B) with A, B P + there
exists a common cause C P +.
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